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a b s t r a c t

In the Humboldt Current System (HCS), biological and non-biological components, ecosystem processes,
and fisheries are known to be affected by multi-decadal, inter-annual, annual, and intra-seasonal scales.
The interplay between atmospheric variability, the poleward undercurrent, the shallow oxygen mini-
mum zone (OMZ), and the fertilizing effect of coastal upwelling and overall high primary production rates
drive bio-physical interactions, the carbon biomass, and fluxes of gases and particulate and dissolved
matter through the water column. Coastal upwelling (permanent and seasonally modulated off Peru
and northern Chile, and markedly seasonal between 30�S and 40�S) is the key process responsible for
the high biological productivity in the HCS.

At present, the western coast of South America produces more fish per unit area than any other region
in the world ocean (i.e. �7.5 � 106 t of anchoveta were landed in 2007). Climate changes on different
temporal scales lead to alterations in the distribution ranges of anchoveta and sardine populations and
shifts in their dominance throughout the HCS. The factors affecting the coastal marine ecosystem that
reverberate in the fisheries are crucial from a social perspective, since the economic consequences of mis-
management can be severe. Fish remains are often well-preserved in sediment settings under the hypoxic
conditions of the OMZ off Peru and Chile, and reveal multi-decadal variability and centennial-scale
changes in fish populations.

Sediment studies from the Chilean continental margin encompassing the last 20,000 years of deposi-
tion reveal changes in sub-surface conditions in the HCS during deglaciation, interpreted to include: a
major reorganization of the OMZ; a deglacial increase in denitrification decoupled from local marine pro-
ductivity; and higher deglacial and Holocene paleoproductivities compared to the Last Glacial Maximum
in central-south Chile (35–37�S) while this scheme is reversed for north-central Chile.

Multi-scale, interdisciplinary approaches and focused research groups are needed to understand air–
sea interactions, plankton dynamics, biomass removal by fisheries, and the transformation and fluxes
of matter across the different HCS components. In this paper, we present a multidisciplinary synthesis
of the HCS that covers its physics, atmosphere, primary and secondary production, medium and high tro-
phic levels, fisheries including management aspects, and relevant sedimentary studies.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The Humboldt Current System (HCS) is a major Eastern Bound-
ary Upwelling Ecosystem and is most notable for its amazing pro-
duction of small pelagic fish (Chavez et al., 2008). The domain
extends from southern Chile (�45�S), where the West Wind Drift
intersects the South American continent, to northern Peru and
Ecuador (�4�S), where cool upwelled waters collide with warm
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tropical waters forming the Equatorial Front. The domain is by
no means uniform, encompassing three well-defined upwelling
subsystems: (1) a productive seasonal upwelling system in cen-
tral-southern Chile; (2) a lower productivity and rather large
‘‘upwelling shadow” in northern Chile and southern Peru; and (3)
the highly productive year-round Peru upwelling system. How
these subsystems are inter-connected and/or dependent on each
other remains uncertain. In addition to the high productivity of
small pelagic fish, the HCS is notable for its clear connectivity to
large-scale basin-wide dynamics associated with El Niño, decadal
and centennial variability, and a large and dynamic oxygen mini-
mum zone (OMZ).

This review attempts a multidisciplinary synthesis of the HCS
that focuses on three specific aspects: (1) ecosystem processes,
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components, and scales; (2) fisheries; and (3) sediment studies. It
is by no means exhaustive; rather the work highlights novel find-
ings and recent advances, thereby extending and updating previ-
ous reviews on the HCS (e.g. Tarazona et al., 2003; Morales and
Lange, 2004; Montecino et al., 2006a; Pennington et al., 2006; Thiel
et al., 2007; Bertrand et al., 2008a). Therefore, the literature cited
herein is purposefully restricted mainly to papers published from
2003 onwards.

The paper begins with background information on the HCS,
including fishery resources. The second section about ecosystem
processes pays special attention to the fact that the HCS is influ-
enced by factors on different time scales and by the presence of
the OMZ. In the third section, we examine contemporary fisheries
activities, research, and management. Longer term changes in the
HCS derived from sediment studies are presented in the fourth sec-
tion. Finally, we discuss end-to-end shifts and the need for further
research.
1.1. Some historical background

Long before contemporary times, ancestral populations devel-
oped along the arid coast of the eastern South Pacific (Thiel et al.,
2007). Native South Americans used and knew much about marine
resources. Marine resources were collected for multiple purposes,
including trade. The native people made use of coastal near-shore
species, salt, guano, and whales (Antezana and Bahamonde, 2002).
In the 19th century, the German naturalist Alexander von Hum-
boldt reported the measurements of the cold current in 1846 in
his book Cosmos, so the Humboldt Current (HC) was named in
his honour.

As a consequence of the increasing economical importance of
the marine resources in the HCS, public institutions aimed at the
study of fisheries fluctuation, oceanography, and ecosystem
dynamics (e.g. Instituto Nacional de Pesca, INP, in Ecuador; Institu-
to del Mar del Peru, IMARPE, in Peru; Instituto de Fomento Pesque-
ro, IFOP, in Chile) have been of crucial scientific importance for the
past half century (for more information, see Tarazona et al., 2003;
Thiel et al., 2007; Chavez et al., 2008). In Peru, international ocean-
ographic cooperation strengthened in the 1970s after the collapse
of the anchovy fishery, in the 1980s with the creation of WorldFish
Center (previously ICLARM) and German collaboration (GTZ), and,
more recently, through ties with the Institut de Recherche pour le
Développement (IRD, France). In Chile, multi- and interdisciplinary
marine research has increased significantly through the building of
focused research groups (JGOFS-Chile; IAI; the FONDAP Program of
the Scientific & Technological National Commission; CONICYT; the
Center for Oceanographic Research in the eastern South Pacific,
COPAS; and the Center for Advanced Studies in Ecology and Biodi-
versity, CASEB).
1.2. Fishery resources

Latitudinally, Peru and Chile can be divided into fishery regions
that coincide with the upwelling subsystems of northern and cen-
tral Peru; southern Peru and northern Chile (S. Peru–N. Chile); and
central Chile from 30�S to 40�S; plus the most southern region of
Chile in the Inland Sea (Montecino et al., 2006a). The three Chilean
regions are similar to those described by Escribano et al. (2003),
who also identify a Northern Upwelling Region, a Central/Southern
Upwelling Region, and the Austral Fjords Region. Moreover, these
authors incorporate characteristics from three larger-scale sys-
tems: the Trade Wind, the Westerlies, and the Polar biomes. The
Pacific Trade Wind biome corresponds to the tropical ocean and
the Westerlies biome is considered to be a transition zone between
the Trade Wind and Polar biomes. The diversity patterns of benthic
and pelagic marine communities in the eastern South Pacific sup-
port the existence of these biogeographic units.

The names of the principal artisanal and industrial resources are
listed in Table 1. Additionally, the relative importance of the recent
landings of the different taxa is shown.
2. Scales and processes in the Humboldt Current System

2.1. General characteristics of the HCS

On the large scale, the trade wind system is the primary driver
of ocean circulation. The trade winds are set up by the permanent
South Pacific High centred off northern Chile and the low pressure
region over Indonesia. Variability in this system is driven by latitu-
dinal shifts of the Intertropical Convergence Zone (ITCZ) and trade
winds in the north, the South Pacific High at mid-latitudes, and the
increasing effects of cyclonic storms and Southern Westerlies as
one moves south. Therefore, recurrent coastal features are due to
equatorward coastal winds, the South Pacific High, and mid-lati-
tude cyclonic storms that reach the coast from offshore. Off central
Chile, atmospheric variability is augmented by the excitation of
coastal low pressure systems that are trapped by the intersection
of the marine boundary layer and the coastal mountains, propagat-
ing poleward from 27�S to as far as 42�S (Montecino et al., 2006a,
and references therein).

In the upper ocean, the HC, also known as the Peru–Chile Cur-
rent, is characterized by an equatorward flow of fresh, cooler
Sub-Antarctic Surface Water northward of �45�S along the eastern
rim of the subtropical gyre (Fig. 1, left). The main flow of the HC
veers offshore in southern Peru and a weaker coastal limb contin-
ues equatorward (Chaigneau and Pizarro, 2005a). The fresher
waters mix with the very salty and warmer Subtropical Surface
Waters (SSW) beginning at �18�S and are partially subducted. At
the northern end, the cool (and saltier) coastal (upwelled) waters
off Peru collide with the fresh, warm Tropical Surface Waters
(TSW) (Swartzman et al., 2008). Below the surface circulation
and water masses, the equatorial undercurrent (EUC) flows east-
ward along the equator and feeds the poleward Peru–Chile under-
current (PUC). This poleward undercurrent lies over the slope and
continental shelf from northern Peru to about 42�S off Chile. A
more ephemeral surface poleward Peru–Chile Countercurrent is
sometimes found between the two equatorward limbs of the HC
(Strub et al., 1998; Chaigneau and Pizarro, 2005b).

Mesoscale variability, meanders or fronts, and squirts and fila-
ments are characteristic features superimposed on the large-scale
HCS circulation in the eastern South Pacific. Chaigneau et al.
(2008) studied the mesoscale dynamics of the Peruvian oceanic re-
gion (between 3�S and 19�S and 70�W and 90�W), observing that
eddies are more frequent south of 15�S and off Chimbote (9�S) than
in the rest of the study area. Long-lived energetic eddies, or those
having a lifetime exceeding 3 months, are principally generated
near the coast and can propagate long distances offshore (Chaig-
neau and Pizarro, 2005c; Chaigneau et al., this issue). On the other
hand, Hormazábal et al. (2004) defined a coastal transition zone
(CTZ) off central Chile that is characterized by high eddy kinetic en-
ergy associated with mesoscale eddies and meanders and extends
from the coast to �600 to 800 km offshore. Based on daily SeaWiFS
chlorophyll data, Correa-Ramirez et al. (2007) showed that this CTZ
can be separated into three regions, with higher chlorophyll-a
(Chl-a) concentrations occurring in wider regions next to the coast
off Peru (10–15�S) and central Chile (30�S), and very narrow re-
gions off northern Chile (Montecino et al., 2006a).

Coastal upwelling is the key process responsible for the high
biological productivity of the HCS (Fig. 1 centre and right). Its sea-
sonal and spatial dynamics have been well described by Strub et al.



Table 1
Common and scientific names of principal artisanal and industrial resources in the Humboldt Current System (HCS) separated by fish (pelagic and demersal), Crustacea (Crust),
molluscs (Moll), echinoderms (Echin) and macroalgae (Seaweeds). List is based on geographical distributions in the HCS, species mostly under special or quota regimes, and
landings in Peru and Chile (available from FAO, IFOP, IMARPE, SERNAPESCA, SUBPESCA and PRODUCE).

Common name Scientific name Landings in 2007 (t)

English Spanish Peru Chile Total

Fish Anchovy Anchoveta Engraulis ringens 6,159,802 1,392,408 7,552,210
Jack mackerel Jurel Trachurus murphyi 254,426 1,302,784 1,557,210
Chub mackerel Caballa, macarela Scomber japonicus 62,387 298,123 360,510
Sardine, common sardine Sardina común Strangomera bentinckib 281,382 281,382
Patagonian grenadier Merluza de cola Macruronus magellanicusb 61,819 61,819
Common hake Merluza común Merluccius gayi gayi 43,571 43,571
Common hake Merluza común Merluccius gayi peruanus 31,634 31,634
Mullet Lisa Mugil cephalus 10,549 79 10,628
Bonito Bonito Sarda chilensis 9706 4 9710
Corvina drum Corvina, lorna Cilus gilberti 6530 564 7094
Patagonian toothfish Bacalao de profundidad Dissostichus eleginoides 126 4995 5121
Yellow-fin tuna Atún aleta amarilla Thunnus albacares 4080 121 4201
Barndoor skate Raya Raja chilensis 974 3203 4177
Pomfret Reineta Brama australisb 3850 3850
Swordfish Pez espada Xiphias gladius 57 3741 3798
Snoek Sierra Thyrsites atun 91 976 1067
Sardine Sardina Sardinops sagax 4 979 983
Besugo Besugo Epigonus crassicaudusb 931 931
Elephant fish Pejegallo Callorhynchus callorhynchus 13 650 663
Ling, kinglip Congrio negro, c. colorado Genypterus maculatus; G. chilensis –a 654 654
Cusk eel Congrio Genypterus spp. 423 423
Flat fish Lenguado Paralichthys spp., Hippoglossina sp. 204 34 238

Crust Shrimp Camarón nailon Heterocarpus reedi –a 4456 4456
Yellow prawn Langostino amarillo Cervimunda johni –d 4197 4197
Red prawn, squat lobster Langostino colorado Pleuroncodes monodon –a 1545 1545
Crab Jaiba, cangrejo Cancer spp., Homalaspis sp., 843 186 1029
Brown shrimp Langostino café Farfantepenaeus californiensisc 524 524

Moll Squid Pota, jibia Dosidicus gigas 427,591 124,389 551,980
Scallop, Peruvian calico Ostión, concha abanico Argopecten purpuratus 43,286 19,584 62,870
Chilean clam Almeja Venus antiqua –e 15,816 15,816
Cholga mussel Cholga Aulacomya atra 8769 3974 12,743
Chilean abalone Loco, chanque Concholepas concholepas 2543 2939 5482
Gastropods Caracoles Tegula spp; Prisogaster spp. 2838 1592 4430
Pacific clam Culengue, almeja blanca Gari solida 478 3673 4151
Top shell Locate, caracol Stramonita chocolata 2838 654 3492
Razor clam Macha Mesodesma donacium –a 2882 2882
Limpet Lapa Fissurella spp. 218 2264 2482

Echin Red sea urchin Erizo Loxechinus albus 1932 38,526 40,458
Seaweed Bull kelp Huirales Macrocystis spp.; Lessonia spp. �18,000 178,726 196,726

a No data.
b Only in southern HCS.
c Only in northern HCS.
d Crustacea = 4148 t.
e Clams = 13,409 t.
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(1998), Montecino et al. (2006a), and Thomas and Brickley (this is-
sue) and so will be only briefly covered here. In central-southern
Chile, upwelling is highly seasonal with maximum upwelling-
favourable winds and biological productivity in austral summer
(January–March). This productive region ‘‘merges” with the highly
productive, seasonal, subtropical front. Off central Chile (starting at
�35�S) and extending to 16�S in southern Peru, the oligotrophic
subtropical gyre impinges on the coast, creating a narrow but pro-
ductive coastal upwelling zone. This region is reminiscent, with
some differences, of the Southern California Bight in the California
Current System (CCS). A transition from seasonal to permanent
upwelling occurs off central Chile (�33�S) and off northern Peru
(�4�S) (Fig. 1); off Peru upwelling forcing peaks in austral winter
(July–September). Somewhat paradoxically, biological productivity
is out of phase with upwelling-favourable wind forcing (Pennington
et al., 2006); iron and light limitations have been implicated as the
cause of lower productivity during the winter season (Hutchins
et al., 2002; Chavez et al., 2008; Echevin et al., 2008; Friederich
et al., 2008).

High Chl-a is typically restricted to within 50 km of the coast,
although the effects of upwelling can be detected far offshore
through the offshore advection of filaments (Correa-Ramirez
et al., 2007). Moreover, in a narrow coastal band, the annual
Chl-a cycle is strong along the entire latitudinal extension (Yuras
et al., 2005), contrasting with previous observations that showed
a weak seasonal cycle of Chl-a averaged over a 100-km band next
to the coast off northern Chile (Montecino et al., 2006a).

Off southern Peru, the veering of the main limb of the HC off-
shore creates ventilation, and is the primary driver of an intense
OMZ from sub-surface to intermediate depths. The sinking and
remineralization of surface-derived organic matter further contrib-
ute to the OMZ. At the northern end, the EUC ventilates the OMZ
and, at the southern end, the PUC advects the low oxygen waters
poleward into northern Chile. Of the six permanent hypoxic re-
gions in the world oceans, the eastern South Pacific OMZ is volu-
metrically the fourth largest, occupying 2.18 ± 0.66 � 106 km3

and accounting for 11% globally. Its core is centred off Peru, where
the upper boundary is shallow (6100 m) and the vertical extension
may reach 600 m (Fuenzalida et al., 2008). Off Peru and northern
Chile in the PUC, low dissolved oxygen conditions (<0.5 mL L�1 or
<22.3 mM O2) in the OMZ determine the nature of denitrification
(aerobic or anaerobic). Chemical signatures of the PUC extend from



Fig. 1. Main characteristics of the Humboldt Current System (HCS). Left: Mean surface currents obtained from surface satellite-tracked drifters from 1991 to 2005 (map
provided by O. Pizarro, University of Concepción). Centre: Water masses and currents (Strub et al., 1998; Graco et al., 2007); schematic representation of permanent and
seasonal upwelling (black and light grey arrows, respectively; Mackas et al., 2006); and long-term mean values of sea surface temperatures (SST in �C) at different locations
from Montecinos et al. (2003). Right: Primary production (PP) mean (�) maximum (��) and gross (���) daily values based on Tarazona et al. (2003), Montecino et al. (2006a),
Henríquez et al. (2007), and Montero et al. (2007). Grey solid and broken lines represent the Humboldt Current (HC) and the Poleward Undercurrent (PUC); TSW, Tropical
Surface Waters; ESW, Equatorial Surface Waters; SASW, Sub-antarctic Surface Waters.
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the Equator past 40�S, shaping the distribution of nutrients and
biological populations throughout the system (e.g. Montecino
et al., 2006a; Farías et al., 2007; Graco et al., 2007; Stevens and
Ulloa, 2008).

The HCS is strongly affected by interactions with the equatorial
dynamic on scales ranging from intra-seasonal (coastal trapped
waves, CTWs), annual (Rossby waves), inter-annual (El Niño/La
Niña), to multi-decadal (Pacific Decadal Oscillation, PDO) (i.e.
Chavez et al., 2003; Montecinos et al., 2007; Ramos et al., 2008).
The primary mechanisms for communicating larger-scale fluctua-
tions to local-scale conditions involve basin-scale changes in the
depth of the pycnocline and the advection of different water mass
types into the local region (Rutllant and Montecino, 2002; Pizarro
and Montecinos, 2004; Ramos et al., 2006; Graco et al., 2007).

2.2. Phytoplankton, primary production, and bio-physico-chemical
interactions

Among the key elements in the dynamics of upwelling ecosys-
tems, the pycnocline–nutricline–oxycline depth is fundamental for
interpreting phytoplankton productivity and growth associated
with the efficiency of any particular upwelling wind event. Along
the coast of the HCS, the thermo-nutricline depth changes accord-
ing to the phase of intra-seasonal CTWs, the annual cycle (seasons),
and the inter-annual El Niño/Southern Oscillation (ENSO) cycle
(Montecino et al., 2006a,b, and references therein). A multi-scale
approach is advisable for studying these ecosystems since all these
cold-warm phases and transitions determine the supply of limiting
nutrients to the euphotic zone, which, in turn, regulates overall
productivity (Fig. 2). Moreover, off northern Chile, wind reversals
occur during the relaxation of upwelling conditions, often in con-
nection with the trailing edge of coastal atmospheric lows. These
wind reversals result in the fertilization of poleward-facing bays
from adjacent upwelling centres (Marín and Moreno, 2002).

Changes in nutrient supply are felt at every trophic level, with
consequences in the carbon transfer pathways (microbial web vs.
classical trophic chain). This transfer of carbon to higher levels
through microbial and classical pathways depends on the size of
the phytoplankton components, the heterotrophic community
structure, and the feeding preferences of the grazers (González
et al., 2004a; Vargas and González, 2004a,b; Morales et al., 2007;
Vargas et al., 2007a; Chavez et al., 2008; Pavés and González, 2008).

Multi-scale changes in the oceanographic conditions, i.e. inter-
annual scale (EN) and at higher frequencies (seasonal, intra-sea-
sonal), also drive changes in the OMZ. During EN events, the
thermocline and upper boundary of the OMZ deepen off northern
Chile and Peru, with recognized implications for the pelagic system
related to nitrogen losses and carbon export. In contrast, during
non-EN years, the oxycline at the upper boundary of the OMZ often
occurs at 20–40 m off central Peru (M. Graco pers. comm.). The
OMZ core reaches its maximum thickness (�100 to �350 m) and
extension (�300 to 400 km) off central Peru (Fuenzalida et al.,
2008). Non-EN years are characterized by high productivity, high
nutrients, high N recycling, denitrification, high carbon export,
and remineralization (Morales et al., 1999; Graco et al., 2006;
Gutiérrez et al., 2006; Paulmier and Ruiz-Pino, 2008).
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depth (black, grey, light grey lines refer to deep, lowering/rising, shallow, respectively), and consequences in the carbon transfer pathways (microbial trophic web (Tweb)
with lower PP/small-sized phytoplankton on left vs. classical trophic chain (Tchain) with higher PP/large-sized phytoplankton on right). The depth of the thermo-nutricline
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level associated with coastal trapped waves (CTWs) (modified from Montecino et al., 2006b).
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2.3. Residence times, dispersal, and resetting

2.3.1. Zooplankton and fish
The recruitment of small pelagic fishes is related to the environ-

mental variability in upwelling ecosystems through processes of
enrichment, concentration, and transport/retention known as the
ocean triad proposed by Bakun (1996). Marín and Delgado (2007)
concluded that the near-inertial motion and alongshore changes
in current direction may serve as mechanisms of coastal water res-
idence time enhancement. This extended mean ‘‘residence time”
within the favorable upwelling-conditions of the near-coastal hab-
itat prevents losses of planktonic organisms, which are more criti-
cal for species with complex life cycles (Bakun and Weeks, 2008).
Mesoscale circulation features may provide other means for retain-
ing zooplankton near favorable habitats. Similarly, the survival of
small pelagic fishes over a range of different spatial–temporal
scales is thought to be mediated mainly by environmental condi-
tions rather than by density-dependent processes (Bertrand et al.,
2004). However, although it is known that environmental condi-
tions largely influence the survival of early life stages, forecasting
environmentally-driven fluctuations in irregular recruitment re-
mains problematic (Brochier et al., 2008; this issue). Field egg
and larval abundances indicating spawning locations and periods
were used to investigate, through modelling and simulations, the
factors driving variability in survival rates; for this, larval retention
associated with phytoplankton-rich coastal areas was evaluated.
Discrepancies between the seasonality of enrichment (winter)
and high primary production in summer are discussed by Lett
et al. (2007) in relation to anchovy egg and larva distributions in
the northern HCS. Furthermore, off Peru and north-central Chile,
the vertical migration of part of the zooplankton, in particular fish
eggs and larvae, is restricted by the presence of the shallow OMZ.

Zooplankton vertical migration is also associated with the OMZ
(Fig. 3). Escribano et al. (2008) provide a complete assessment of
copepods and euphausiids in northern Chile (20�S) for March
2000, revealing that the whole sampled water column (0–600 m)
is occupied by distinct species having well-defined habitats, some
of which occupy the OMZ on a daily basis. Ontogenetic migrations
were evident in Eucalanidae and Euphausia mucronata. Estimates in
terms of biomass showed a substantial daily exchange of carbon
between the euphotic layer and the OMZ, with over 75% of the total
zooplankton biomass moving into and out of the OMZ. This crusta-
cean zooplankton biomass participates actively in carbon ex-
changes through respiration, mortality, and the production of
faecal pellets within the OMZ. The strong inter-annual variability
recurrently exposes these ecosystems to disruptions or resetting
(Bakun and Weeks, 2008; Chavez et al., 2008).

2.3.2. Intertidal communities and benthos
Wind-driven coastal ocean circulation is crucial for the dis-

persal of marine benthic invertebrates and the recruitment and
settlement of intertidal species (Broitman et al., 2001; Narváez
et al., 2006; Vásquez et al., 2006). In conjunction with wind stress,
buoyancy fronts produced by river plumes, common from about
30�S southward in the HCS, can also play a role in delivering larvae
to shore (Vargas et al., 2006a).

Since retention is influenced by both physical and biological
(behaviour) factors (Marín and Moreno, 2002; Montecino et al.,
2006a; Rykaczewski and Checkley, 2008), larval dispersal studies
rely on two different approaches: those with physical orientations
and those based on organism behaviour. The former approach does
not emphasize the biological characteristics, but treats larvae as
passive particles. Thus, settlement variability for intertidal species
in time has been associated with summer storms and circulation
features such as the advection of warm waters that moves frontal
zones onshore. Nevertheless, biological-oceanographic models are
needed for a better understanding of larval transport beyond the
passive particle approach. Mesoscale processes may shape recruit-
ment patterns by way of modulating invertebrate larval dispersal.
This has been reported by Lagos et al. (2007) by studying the spa-
tial synchrony in species with contrasting dispersal potential. Spa-
tially, the coastal morphology (i.e. bays, head-lands, coastline
configuration) influences the magnitude of larval delivery and sub-
sequent recruitment patterns, as reported for a variety of brachyu-
ran crab species (Palma et al., 2006). Narváez et al. (2006) reported
on the effect of what they called ‘large warming events’, which



Fig. 3. Synoptic diagram summarizing novel information on the vertical structure of water column features off northern Chile, including the OMZ. Oxygen distribution in a
900 m water column (Farías et al., 2007); water masses (Leth et al., 2004; Graco et al., 2007); chlorophyll-a (Chl-a) biomass abundances (Montecino et al., 2006a); nitrite,
nitrate, and ammonia (Farías et al., 2007); bacterial diversity (H0) (Stevens and Ulloa, 2008); crustacean zooplankton percentage for a total of 26 species that live exclusively in
the upper layer above the OMZ, within the OMZ, and those that enter the OMZ from above or below; (�) patterns represent the day-dominant habitat (modified from
Escribano et al., 2008). The last column shows percent degradation (%) for decay of sinking protein within each layer (Pantoja et al., 2004). STSW, Subtropical Surface Waters;
SASW, Sub-antarctic Surface Waters; ESSW, Equatorial Sub-surface Waters; AAIW, Antarctic Intermediate Waters.
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occurred a few times in spring-summer in association with epi-
sodic downwelling-favourable (northerly) winds. During these
events, the authors observed significant synchrony in the recruit-
ment of several invertebrate taxa (decapods, gastropods, polychae-
tes, mussels, sea urchins), suggesting that larvae could be
entrained in these advective fronts and delivered onshore. The
intensity of local upwelling and the distance downstream from
an upwelling centre are also factors influencing the succession
and structure of hard-bottom communities (Broitman et al.,
2001; Castilla and Largier, 2002; Castilla et al., 2002; Wieters
et al., 2003; Navarrete et al., 2005; Blanchette et al., this issue).

Benthic hypoxic zones and the sediments also offer examples
of recruitment changes as does the cyclic ‘‘resetting” of the
system on the scale of ENSO perturbations. Indeed, these regions
host specific benthic fauna together with giant sulphur bacteria
during normal ‘‘colder” La Niña conditions. During EN events, bet-
ter oxygenated conditions prevail and some species proliferate,
whereas others emigrate or die. All these changes affect local
small-scale fisheries; i.e., increase in shrimp abundance or modi-
fications in the population distribution of other invertebrates
(Arntz et al., 2006).

2.4. Trophic interactions and size structure

Scaling and allometric approaches based on the well-accepted
concepts of the pyramids of biomass and numbers are useful for
studying ecological systems. Moreover, the size and numerical
abundance of different organisms are tightly coupled (Damuth,
1991). Determination of biomass distribution by size in pelagic
systems has been a significant step in the search for generaliza-
tions in aquatic ecology (Marquet et al., 2005, and references
therein). In addition, the consideration of body size as a state var-
iable has been a useful tool for specific modelling efforts (i.e. size-
based simulation model of carbon and nitrogen flows in plankton
communities). Changes in the taxonomic composition along the
community size spectrum can explain the relationship between
photosynthetic efficiency and the phytoplankton size structure
off Chile, as is also the case for the fate of carbon on inter-annual
scales (Montecino and Quiroz, 2000; Iriarte and González, 2004).

Recent studies about the relative importance of microbial and
classical food webs in permanent and seasonal upwelling loci in
the HCS have yielded novel information on quantitative grazing
interactions that may be the controlling factor in the size, abun-
dance, and biomass of coastal assemblages. One of the few at-
tempts to analyze both the abundances of microorganisms and
grazing processes under oxic and suboxic conditions of marine
areas characterized by a relatively shallow OMZ, or hypoxic envi-
ronments, is the study of Cuevas and Morales (2006) off northern
Chile. These authors found that heterotrophic nanoflagellate
(HNF) consumption controls bacterial production in the suboxic
layer. Previously, Vargas and González (2004b) indirectly esti-
mated protozoan ingestion rates (including HNF, ciliates, and het-
erotrophic dinoflagellates) from an area around Mejillones Bay
(23�S), concluding that the HNF were largely bacterivorous. A
study of seasonal variations in the trophic pathways of carbon at
36�S over the shelf off Concepción provided evidence that the en-
ergy available for larger omnivorous and carnivorous metazoans,
and even for commercially exploitable pelagic fishes, may be con-
siderably larger than that estimated from a simple herbivore-dom-
inated food chain model (Vargas et al., 2007a).

In upwelling ecosystems, high bacterial rates are related to la-
bile dissolved organic carbon (DOC) availability during relaxed
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upwelling cycles; depending on seasonality, carbon bacterial de-
mand on primary production is high and can be efficiently trans-
ferred to higher levels through the trophic microbial web (G.
Daneri, pers. comm.). Despite the fact that biological processes
could be synoptically and locally important, on the large-scale,
the relationship between bottom-up forcing, zooplankton, and
foraging fish species has been corroborated in Peruvian waters
(Ayón et al., 2004, 2008). Apparently, the observed multi-year,
large-scale, bottom-up control occurs at the same time as the
smaller-scale depletion of zooplankton when and where anchoveta
are locally abundant. This effect was observed over a wide range of
anchoveta abundances.

2.5. Fluxes of carbon and nitrogen, bacterial activity, and the OMZ

In the oceans, it is clear that natural climate variability can have
a large impact on the ecosystem structure and biological produc-
tivity (Chavez, 2006). Net primary production in the global ocean
is thought to be in the range of 40–70 Pg C per year and is accom-
plished by a phytoplankton biomass of about 1 Pg C. Consequently,
on average, the phytoplankton biomass turns over on the order of
once per week (Marra, in press).

In the HCS, carbon fixation has been reported to reach very high
values (1.0–9.3 mg C m�2 d�1 with an overall mean of 3.5 g C m�2

d�1 for Peru) (Fig. 1), varying widely between inshore and offshore,
and changing with seasonal upwelling and bio-optical variability
(Montecino et al., 2004). Many efforts have been undertaken to
understand the role of key species or functional groups in global
carbon sequestration. The high fluxes of CaCO3 (maximum
�180 mg m�2 d�1) at 30�S represent a potential sediment reser-
voir, as they result in significant accumulations in the underlying
deep sediments (8–9 weight% in continental slope cores), and
therefore in carbon sequestration (González et al., 2004b; Mar-
chant et al., 2004). Also, the crucial role that euphausiid faecal
material plays in the total organic carbon export flux to the sedi-
ments has been recently assessed by González et al. (this issue)
along the HCS between 19�S and 42�S.

Phytoplankton is continually stirred and mixed by ocean pro-
cesses and air-sea interactions, playing a role in the exchange of
chemical species (i.e. gases and aerosols). Studies of CO2 dynamics
(sources and sinks) in the eastern South Pacific are important for a
better understanding of the interplay between global climate
change and the CO2 budget. The upwelling areas off Peru and Chile
are considered important areas for CO2 exchange with the atmo-
sphere, and the Peruvian upwelling system has been found to be
a source of CO2 to the atmosphere during all seasons (Friederich
et al., 2008). Measurements of carbon dioxide fugacity (fCO2) dur-
ing upwelling may reach >400 latm, and there is a latitudinal gra-
dient in CO2 outgassing between northern and central Chile caused
by increased wind speeds in the south. It appears that, for western
South America, the crossover from source to sink occurs between
21�S and 27�S (Friederich et al., 2008). However, fCO2 may decrease
or reverse after a period of strong photosynthesis in phytoplank-
ton-rich filaments and patches (Montecino et al., 2006a). In some
cases, suboptimal levels of dissolved iron may prevent a rapid bio-
logical uptake of the upwelled, supersaturated CO2 waters, contrib-
uting to the continued outgassing of the excess CO2 (Torres and
Ampuero, in press).

Upwelling also promotes N2O outgassing as measured from
2002 to 2007 (36�S) and 2000 to 2004 (�21�S) by Cornejo et al.
(2007) and Farías et al. (2007), respectively. At 21�S, N2O displayed
sharp, shallow peaks with concentrations of up to 124 nM (1370%
saturation) in association with a strong oxycline that impinges on
the euphotic zone; N2O levels at these peaks were highly variable
and depended on the development of a physical gradient evi-
denced by the presence of the surface mixed layer associated with
the Eastern South Pacific Intermediate Water. Thus, part of this
high, shallow N2O accumulation can be lost towards the atmo-
sphere, making a high potential greenhouse contribution. At
36�S, Cornejo et al. (2007) confirmed that the continental shelf
off central-south Chile is an important source of N2O to the atmo-
sphere, with a mean annual N2O flux of 30.2 lmol m�2 d�1. The
authors found that increasing N2O concentrations agree with the
appearance of upwelling-favourable wind stress and a strong influ-
ence of oxygen-poor, nutrient-rich ESSW.

In these coastal upwelling areas, autotrophic activity is gener-
ally high, with high incorporation and degradation rates of dis-
solved organic carbon (DOC) coupled with high mineralization
rates. The strong relationship between primary productivity (PP)
and bacterial productivity (BP) suggests tight coupling between
the organic matter produced during photosynthesis (fresh mate-
rial) and bacterial utilization. The above conclusions, coupled with
the lack of correlation with temperature, seem to confirm that or-
ganic substrate availability is an important factor affecting bacte-
rial activity in upwelling areas (Vargas et al., 2007a,b). Within
the 36�S seasonal upwelling system, bacterial activity was low dur-
ing non-upwelling periods; consequently, the relationship be-
tween PP and BP can be associated with water column
stratification processes (Vargas et al., 2007a).

Bacterial secondary production (BSP) has been differentially
evaluated from non-bacterial prokaryotes in the OMZ off central
Chile (Levipan et al., 2007). This time series of prokaryote second-
ary production (PSP) showed that BSP accounted for the majority
of the PSP with maximum values of �600 lg C m�3 h�1. Moreover,
Van Wambeke et al. (2007) reported heterotrophic bacterial pro-
duction coupling with primary production on a larger scale in
the eastern South Pacific.

The OMZ is an important sink for fixed nitrogen, contributing
30–50% of the oceanic nitrogen removal, mainly through the pro-
cess of pelagic denitrification. In this low-oxygen zone, anaerobic
denitrification by bacteria that use nitrate as an electron source re-
duces nitrate to nitrite (depleting nitrate and increasing nitrite)
and ultimately reduces nitrite to nitrous oxide (Montecino et al.,
2006a). Strong gradients and a high vertical structure of nitrogen
species exist on a scale of meters. The biological and functional
diversity of microorganisms living in the OMZ have been studied
recently along the oxygen gradient in the HCS (Molina et al.,
2007; Stevens and Ulloa, 2008). These studies were related to the
characterization of functional genes involved in nitrogen cycling
in the OMZ of the HCS and showed shifts in the structure of ammo-
nia monooxygenase (amoA) genes and nitrite reductase (nirS)
genes. Anammox is the microbially catalyzed anaerobic oxidation
of ammonium coupled to nitrite reduction, with the production
of nitrogen gas. Observations by Thamdrup et al. (2006) off Chile
indicated that ammonium was oxidized and nitrite was reduced
through the anammox reaction, whereas denitrification was gener-
ally not detected and, therefore, the area was a minor sink for ni-
trite. In these environments, anammox is the only documented
anaerobic pathway of ammonium oxidation and it provides a sec-
ond route from fixed nitrogen to N2 along with microbial denitrifi-
cation, which was previously thought to be the only important
process to convey such a conversion.

The high decay rates of organic carbon in the water column
and high bacterial growth efficiency result in a generally low
(<1%) rain rate of organic carbon at the sediment–water interface.
No acceleration of the particulate flux of sinking organic matter
due to the presence of the OMZ has been observed (Pantoja
et al., 2008).

A summary of the main characteristics described above is
shown in Fig. 3, superimposed on the vertical structure of the
water column features, including the OMZ defined by the oxygen
vertical gradient.
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3. Fisheries activities, research, and management

An ecological understanding of the ocean is essential for many
disciplines (Rykaczewski and Checkley, 2008) and fisheries consti-
tute one of the most complex anthropogenic effects. Recent ecosys-
tem-based management directives, as recommended by many
experts, require considering both direct and indirect fishery effects
(Crowder et al., 2008). Although the indirect effects of fisheries are
predicted to lead to an unprecedented decline in marine top preda-
tors and the initiation of trophic cascades (Heithaus et al., 2008),
these topics have not been studied much in the HCS (Taylor and
Wolff, 2007; Taylor et al., 2008). By-catch constitutes an additional
concern because, during fishing operations, such catches are often
discarded (i.e. seabirds, sharks, rays, chimaeras, turtles). World-
wide discards have declined over about a ten-year period from
27 to 7 million t (Zeller and Pauly, 2005). This global reduction
might have been caused by an overestimate (of about 7 million t)
in the original figure and a switch to more selective gear, but there
are also indications that an increased portion of the by-catch is
now being retained and used. The demersal crustacean fishery pro-
duces the highest levels of by-catch in Chile (www.oceana.org,
Document 11, June 2005).

Today, emergent deep-sea fishing methods in the eastern South
Pacific that target species and habitats of seamounts and canyons
also give cause for conservation and regulatory concerns; long-
lived species with restricted habitats and high concentrations
(i.e. orange roughy) are highly vulnerable to depletion. When
addressing the issue of deepwater fisheries in the HCS, trawling
poses another problem because it affects the fragile cold-water
benthos. The enforcement and compliance of regulations regarding
these issues at sea is not only technologically but also legally diffi-
cult (FAO, COFI/2007/Twenty-seventh Session, Rome, Italy, 5–9
March 2007).
3.1. Fisheries in the Humboldt Current System

The primary commercial catch off northern-central Peru is ta-
ken from a single anchovy (anchoveta) stock, with a historical
but lesser contribution from a sardine stock. Other species
exploited include chub mackerel and bonito. In the S. Peru–N. Chile
region, important commercial species include sardine, a second
anchoveta stock, jack mackerel, tuna, and swordfish. In central
Chile, the primary commercial fish are anchoveta, jack mackerel,
and common sardine. Total landings of species like chub mackerel,
common sardine, hake, and squid are much smaller (Table 1).

The Chilean fjord region is an important area for trawl and long-
line fisheries based on gadiform fishes such as Patagonian grena-
dier and southern hake; the latter has supported annual catches
of 30,000 t in the past decade (Bustos et al., 2007).

Industrial demersal fisheries are actually comparatively small in
the HCS (<1% of total fish landings in Peru). The hake (Merluccius
gayi peruanus) fishery in Peru has shown a significant decline in
the last 15 years, attributed to overfishing, and a diminished repro-
ductive capacity and increased population vulnerability to envi-
ronmental stress (Ballón et al., 2008; Guevara-Carrasco and
Lleonart, 2008). The Chilean hake ( Merluccius gayi gayi) fishery,
which is concentrated in central-south Chile, has reached maxi-
mum catches of >100,000 t but has currently decreased to less than
44,000 t (Table 1).
3.1.1. Small to medium-sized pelagic fish
Along with sardine, anchoveta experience well-known periodic

changes in population size and distributions, with anchoveta found
in more recently upwelled waters closer to the coast and sardines
normally found farther offshore. The shifting abundance between
anchoveta and sardine populations (Niquen and Bouchon, 2004)
throughout the upwelling system has been explained by the habi-
tat-based hypothesis related simply to the range of habitat avail-
able forced by climatic changes on different temporal scales
(Bertrand et al., 2004; Gutiérrez et al., 2007). The specific mecha-
nisms by which climatic changes affect the distribution and abun-
dance of the fishes are still a subject of debate. Anchoveta are a
main prey of marine mammals, seabirds, fish, and fishers, being
an important component of matter and energy processing in the
HCS.

Three major fishing stocks are recognized throughout the
anchoveta distribution range (4–42�S); the largest stock is off
northern Peru, a medium-sized one is found off southern Peru–
northern Chile, and a smaller stock exists off central Chile (Castro
et al., 2001). In terms of population studies and recruitment vari-
ability (Yáñez et al., 2001), stock units must be carefully identified,
especially to improve management regulations. Anchoveta large-
scale spatio-temporal dynamics, considering the concentration,
percent occupancy of space, and clustering of high-fish abundances
in relation to environmental variables from 1983 to 2003 in Peru,
showed transition periods with associated high biomasses of an-
chovy and sardine, but with different spatial aggregation patterns
(Gutiérrez et al., 2007). Latitudinal variations in environmental
characteristics off northern and central Chile during the anchoveta
spawning season are correlated and crucial for larval survival, as
are transport, retention, and food limitations during their early life
history (Castro et al., 2001).

A synchronous fluctuation pattern has been quantified in the
three anchoveta fisheries from the northern to southern upwelling
ecosystems; these were found to be out of phase with large-ampli-
tude sardine (Sardinops sagax) fisheries (Cubillos et al., 2007). In the
southernmost spawning population of the HCS, the reproductive
strategies of common sardine (Strangomera bentincki) and ancho-
veta take advantage of the effects of seasonal upwelling (Cubillos
et al., 2001); spawning at the end of the winter enhances egg
and larva survival during moderate upwelling, low turbulence,
and the weak offshore Ekman drift.

Gutiérrez et al. (2008) indicated that, off Peru, there is an eco-
logical overlap between anchoveta and the squat lobster or red
prawn, Pleuroncodes monodon. Whereas red prawn are restricted
to the coldest coastal waters, anchoveta occur over a wider tem-
perature range. It is worth noting that P. monodon inhabits the
HCS from 7�S off Peru to Chiloe Island (43�S) in Chile, where it
has a bottom habitat. The demographic explosion of red prawn
off Peru since the mid-1990s is concomitant with colder conditions
and was accompanied by a change toward more pelagic behaviour.
M. Gutiérrez et al. (2008) linked this change to the shallower oxy-
cline off Peru, as compared to that off Chile.

The high degree of plasticity in the feeding behaviour of ancho-
veta (Espinoza and Bertrand, 2008) and clupeoids in general (van
der Lingen et al., 2006) is a matter of ongoing study in the context
of ecosystem functioning. This will help to re-adjust and resolve
ecosystem models and predictions for these small pelagic fishes.
Trophodynamic anchoveta studies using the conversion of stomach
contents to carbon equivalents and generalized additive models
(GAMs) indicate that zooplankton (with euphausiids contributing
67.5% of the dietary carbon, followed by 26.3% from copepods)
was by far the most important dietary component. Foraging behav-
iour relates to the diel cycle, distance from the coast, sea surface
temperature, and latitude, thereby illustrating the capability of
anchoveta to forage at any time and place (Espinoza and Bertrand,
2008).

Jack mackerel or ‘‘jurel” is the second largest fishery in the HCS.
Jurel spawning is a large-scale process and the population is con-
sidered to be composed of a single stock based on the seasonality
of the fishery and migrations, known spawning grounds, similarity

http://www.oceana.org
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of the size composition of catches, and genetic convergence
throughout the HCS (Poulin et al., 2004; Cubillos et al., 2008). Jurel
is considered to be a straddling species (distributed both inside and
outside the 200-mile economic exclusive zone, EEZ) for reproduc-
tion and feeding. Jurel has been studied in Chile by more than 80
projects and is subject to constant direct assessment.

The jurel fishery became important in the early 1970s, when it
developed as an alternative to that of anchoveta, which decreased
as shown by catch statistics since 1950. After the jurel poor recruit-
ment in the 1980s and its overexploitation (catches reached 4.5
million t in Chile), restrictions were imposed in 1998. Given
favourable recruitment from 1996 to 2002, jurel is now under full
exploitation. Although in 2007 the most important landing in Chile
was anchoveta (30%), it was closely followed by jurel (26%). In con-
trast, jurel catches in Peru declined markedly in recent years.

3.1.2. Small-scale or artisanal fisheries
In the highly productive region of the HCS, IFOP in Chile, IMA-

RPE in Peru, and INP in Ecuador have been collecting data on land-
ings by species, weight, and gear in the major ports of artisanal
fisheries since 1969. Commercially and ecologically important spe-
cies include molluscs (bivalves, gastropods and cephalopods), crus-
taceans (crabs, prawns, shrimps), and fishes like hake, barndoor
skate, pomfret, and other bentho-demersal resources (Table 1).
Small-scale fisheries have exclusive rights to commercial landings
within a region extending from 3 to 5 miles from the coast.

Interestingly, management decisions have been most com-
monly based on sustained landings in small-scale fisheries. Also,
although a long-term decline of economically important species
in fisheries could motivate some fishers to leave the fisheries,
which would lead to a decline in fishing effort, this has not oc-
curred. On the contrary, there has been a long-term trend of
increasing fishing effort attributed to socio-economic-cultural is-
sues and livelihood adaptability (Salas et al., 2007).

3.2. Management

The challenge of managing fisheries has gone through phases of
state regulation at the national or at least stock level. Present steps,
especially in the management of benthic resources, relate to build-
ing local capacity for self-regulation and the establishment of equi-
table access and rights to fisheries resources among stakeholders.

3.2.1. Benthic resources: territorial use rights for fisheries and open
access

The co-management of benthic resources is based on territorial
use rights for fisheries (TURF) and was developed to improve the
management status of benthic fisheries (mainly dive fisheries for
invertebrates and algae). The TURF is combined with open access
areas. Historically, open access fisheries only need an authorization
to exploit mostly resident stocks; from a practical point of view,
the fishery has free access.

In Chile, the TURF system was initiated at the beginning of the
1990s but was only legally established in 1997 (Bernal et al.,
1999; Thiel et al., 2007). TURF areas are exploited by fishermen
under the permanent supervision of the administrative authority
according to a base study proposal and a management plan devel-
oped by a team of experts and qualified professionals. This type of
management directly affects 12,000 small-scale fishermen, involv-
ing more than 300 TURF areas. The mid-term tendencies show an
increase in the number of these areas. Thus, TURFs have proven to
be a good tool for increasing stocks and recovering depleted
fisheries.

Experience with incentives for the participation of fishers in
the monitoring and management of artisanal fisheries around
southern South America has resulted in the conclusion that, over-
all, centralized monitoring, assessment, and control of these fish-
eries are unrealistic (Parma et al., 2003). On the contrary, it has
been found that delegating much of the monitoring and manage-
ment only to the local fishers’ organizations to conserve their
resources has serious risks and consequences. Therefore, co-
management experiments should be based on agreements
between fishers, scientists, and managers, aiming at the develop-
ment of sustainable management plans for specific situations. For
example, Wolff and Mendo (2002) proposed that co-management
plans for the scallop in Peru should be at the level of metapopu-
lations. In addition, the Chilean National Commission of the Envi-
ronment (CONAMA) has been promoting the development of a
model for marine coastal protected areas of multiple uses that
would allow both ecosystem connectivity and the conservation
of marine biodiversity (CONAMA, 2007).
3.2.2. Fisheries regulations
The total allowable catches (TAC) for benthic and pelagic re-

sources are discussed yearly by the Chilean National Fisheries
Council with the participation of fisheries authorities, scientists,
and representatives of industrial and artisanal fisheries. In Peru,
the same TAC is assigned or adjusted at the beginning of each fish-
ing period and, for anchoveta, a new individual quota system is
also being implemented (Chavez et al., 2008). According to Fréon
et al. (2008), Peru has a huge overcapacity problem with purse-
seiners and fishmeal factories, leading to a very inefficient fishing
strategy and with an increase in productions costs. For the fishing
fleet, a certain level of overcapacity is advantageous to adjust to
high abundance periods, but the present fishing capacity of the
Peruvian pelagic fleet is at least three times higher than the aver-
age TAC (Fréon et al., 2008).

In the Chilean pelagic fishery, the system of individual transfer-
able quotas (ITQ) was introduced in 2001 and had an immediate
impact on the operation of the industrial fleet. The number of ac-
tive vessels fell from 132 vessels in 2000 to 65 in 2002. Addition-
ally, there were also benefits due to lower capital and operating
costs, eliminating chronic overinvestment. Stopping the ‘‘Olympic
race” also allowed fishermen to catch less fish in a given trip,
improving the quality of the landings and allowing diversification
in processing and marketing. After December 1997 to December
2000, when the hake (M. gayi gayi) fishery was closed for biological
reasons, the authorities allowed ‘experimental’ fishing expeditions
to keep the fleet active under controlled conditions. These special
expeditions worked as a pseudo-individual quota system and facil-
itated the formal introduction of an ITQ system later on (P. Barría,
IFOP, pers. comm.).

Biological bases and the monitoring of fish and shellfish re-
sources in Peru and Chile can be found at the web sites of IMARPE,
IFOP and the Chilean Fisheries Research Fund (FIP). Recently, the
results of an overall analysis of the FIP projects (Yáñez et al.,
2008), through a structural matrix analysis of some of the re-
sources shown in Table 1, indicated that the focus was on fisheries
biology, with little emphasis on oceanography and no interest in
economic, social, or governability factors. Evidently, an integrated
framework can lead to an adequate protection of marine ecosys-
tems and the sound use of marine resources, including fisheries
(Crowder et al., 2008) in the specific case of the HCS.
4. Long-term changes in the Humboldt Current System

Bakun (1990) proposed that the major coastal upwelling sys-
tems of the world have been experiencing increased upwelling
intensity since the mid-20th century in response to anthropogenic
greenhouse forcing. He suggested that elevated atmospheric CO2

concentrations could intensify coastal ocean upwelling by heating
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the land surface more than the ocean, enhancing the spring and
summer land–sea contrast that drives near-shore upwelling in
eastern boundary currents (EBC) regions. Temporal trends in
upwelling have been considered by different authors. Recent find-
ings show increased upwelling in the 20th century for the Iberian
Peninsula (in winter with a possible negative impact on the
recruitment of small pelagic fishes; Santos et al., 2005); the
Arabian Sea, where it is accompanied by an increase in phytoplank-
ton biomass (Goes et al., 2005); and parts of the CCS and HCS
(Bakun, 1990; Vargas et al., 2007c). For the Canary Current,
although upwelling increased in one area (the Moroccan upwelling
off Cape Ghir; McGregor et al., 2007), a study of spatio-temporal
trends in upwelling patterns for the period 1967–2006 shows a
strong decrease in all seasons, particularly summer (Gómez-Geste-
ira et al., 2008). For the HCS, positive trends of inferred primary
production (from organic carbon content in sediments) coincide
with increasing upwelling-favourable winds in instrumental re-
cords and take place both off central Peru and northern Chile, sug-
gesting that these positive trends occur on a regional scale
(Gutiérrez et al., 2006; Vargas et al., 2007c).

4.1. The sedimentary record, decadal, and multi-decadal time scales

Geochemical, micropaleontological, and mineralogical analyses
of laminated sediment cores from Mejillones Bay in northern Chile
(23�S) and from the central Peruvian continental slope (off Pisco
and Callao, 13�430S and 12�020S, respectively) combined with
20th century instrumental data, suggest intensification and cooling
of coastal upwelling regimes along northern Chile and central-
southern Peru since the late 19th century (Vargas et al., 2007c;
Siffedine et al., 2008) as well as changes in ecosystem properties,
terrestrial runoff, and the oxygenation state of the water column
(Gutiérrez et al., 2006, 2008a,b; Díaz-Ochoa et al., 2008; Sifeddine
et al., 2008) (Fig. 4).

Vargas et al. (2007c) proposed that the intensification of
upwelling-favourable coastal winds appears to have been driven
by enhanced solar heating over land (Atacama) through a decrease
in low-cloud cover, and that the increased land-sea thermal con-
trast along this arid coast intensifies the equatorward wind stress
resulting in enhanced primary and export production during inter-
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Fig. 4. Schematic representation of changes in sea surface temperature (alkenone-
derived, Alk-SST) interpreted as the strength of the Ekman pumping; organic carbon
fluxes (Corg flux) used as an indicator of primary/export production; and oxygen-
ation of the bottom environment based on ratios of redox-sensitive trace elements
(Cu/Al, Mo/Al, Ni/Al, Zn/Al, V/Al), bulk sedimentary d15N, and information on the
preservation of calcareous foraminifera; data taken from sediment cores collected
in upwelling centres off northern Chile (23�S, Mejillones Bay) and central Peru (12–
15�S). This drawing simplifies and summarizes information published by Vargas
et al. (2007c), Valdés et al. (2008), Díaz-Ochoa et al. (2008), and Siffedine et al.
(2008).
decadal EN-like conditions. The authors suggest that this mecha-
nism overcompensates for the overall effect of a regional surface
warming secular trend in the HCS. The secular intensification of
ENSO-like variability from the 19th century closely matches the
onset of the modern ENSO teleconnection patterns between tropi-
cal and subtropical western South America, implying regional
hydrological changes (Vargas et al., 2006b). The results for north-
ern Chile and Peru contrast with a general warming trend over
the past �250 years at the upwelling centre off Concepción
(36�S) (Vargas et al., 2007c).

4.2. Accumulation of fish scales in sediments under the OMZ

Because of their high economic value, relatively long time-ser-
ies of abundance records (e.g., landings, recruitment, etc.) are
available for pelagic fishes such as anchoveta, sardine, and jack
mackerel in some highly productive EBC settings. Recent shifts be-
tween alternating anchoveta and sardine regimes have been de-
scribed for the Pacific and have been linked to large-scale
atmospheric and oceanic changes such as the PDO (Chavez
et al., 2003). In the HCS, these regime shifts (a cool ‘‘anchoveta re-
gime” and a warm ‘‘sardine regime”) are attributed to long-term
periods of warm or cold temperature anomalies related to the ad-
vance or retreat of warm subtropical oceanic waters toward the
coasts of Peru and Chile (Alheit and Ñiquen, 2004). The recent
time series, however, include both environmental influences as
well as the impact of fishing. Most landing time series generally
extend less than 50 years, limiting our capacity to detect natural
multi-decadal scale variability. A ‘‘sediment approach” is particu-
larly useful since it provides longer timescales, including periods
before the onset of intense commercial fishing (Baumgartner
et al., 1992).

The accumulation of fish debris (bones and scales) in sediment
settings of the continental shelf and upper slope off Peru and Chile
under the hypoxic conditions of the OMZ has received attention
over the past 25 years. Fish remains are often well-preserved in
these environments, thus providing a record of past changes in fish
populations (Milessi et al., 2005, and references therein). Off Callao
(Peru), Schwartzlose et al. (1999) provided a �100-year history
(AD 1875–1974) of anchoveta and sardine abundances. Recently,
Sandweiss et al. (2004) demonstrated the usefulness of archaeo-
logical data in tracking multi-decadal changes between anchoveta
and sardines along the coast of Peru. Also, a multi-proxy study,
including fish scales from laminated sediments collected off Pisco
and Callao (Gutiérrez et al., 2008b), revealed dramatic centen-
nial-scale changes related to the Little Ice Age, with overwhelming
multi-decadal variability.

There is evidence that spatial and temporal variations in the
extension and strength of OMZs may lead to oxygenation changes
in the underlying sediments, and that these variations could
greatly affect the preservation of fish remains. The potential pres-
ervation biases of fish remains due to variable redox conditions has
been recently addressed by Valdés et al. (2008) for Mejillones Bay
in northern Chile and by Díaz-Ochoa et al. (2008) and Gutiérrez
et al. (2008a) off Peru. Valdés et al. (2008) found that the anchoveta
scale deposition rate was probably influenced by dissolution pro-
cesses linked to higher oxygenation of the bottom environment
prior to ca. AD 1820. Díaz-Ochoa et al. (2008) observed an increase
in the redox-sensitive trace elements in the early to mid-1800s
(Fig. 4) and concluded that the change to more reducing (and prob-
ably more anoxic) conditions since the early 19th century might
have led to better preservation of fish remains and several biogenic
proxies. Gutiérrez et al. (2008a,b) associated this biogeochemical
regime shift in the early 19th century with an expansion of the
nutrient-rich, oxygen-depleted EESW, which resulted in overall
higher diatom and pelagic fish productivity.
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4.3. Changes in productivity since the Last Glacial Maximum

Information about paleoceanographic changes and the history
of productivity in the HCS has grown over the past two decades. Ef-
forts have focused on the reconstruction of paleoproductivity since
marine biological productivity might be one of the mechanisms
responsible for glacial/interglacial pCO2 changes (Broecker, 1982).
On glacial–interglacial scales, primary productivity in the upwell-
ing ecosystem off northern Chile has varied with the precessional
cycle (�20,000 years) during the last 100,000 years, and with in-
puts of iron from the continent due to changes in precipitation pat-
terns. This provides evidence for iron control of past productivity in
the region (Dezileau et al., 2004; Mohtadi and Hebbeln, 2004).
Experimental work has demonstrated that iron limitation is a ma-
jor constraint on phytoplankton growth along the eastern South
Pacific in present times (Hutchins et al., 2002).

Planktonic foraminiferal faunal changes off Chile and sedimen-
tary nitrogen isotope composition (d15N) data between 11�S and
36�S indicate important and synchronous changes in sub-surface
conditions in the HCS during deglaciation (Fig. 5), interpreted as
a major reorganization of the OMZ that affected a large region of
the eastern South Pacific (Higginson and Altabet, 2004; De Pol-
Holz et al., 2006; Robinson et al., 2007; Mohtadi et al., 2008). Sed-
imentary d15N has been widely used as a tool for reconstructing
past variations in water column denitrification over timescales
from hundreds to million of years, and near-surface NO�3 draw-
down (see Altabet, 2006 for a review). Results from several 14C-da-
ted cores from the upwelling regions of the Peru and Chile margins
reveal remarkable similarities among geographic areas with low
glacial sedimentary d15N values followed by an abrupt rise at
�17 ka (5‰ increase off Peru and northern Chile; 3.5‰ increase
off central-southern Chile), a gradual decline until the mid-Holo-
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cene, and then an increase toward the present (Fig. 5). The unique
deglacial increase in denitrification seems to be decoupled from lo-
cal marine productivity (Altabet et al., 2004; De Pol-Holz et al.,
2006; Chazen et al., 2007; Mohtadi et al., 2008). In Peru, it coin-
cides with the onset of stronger El Niño activity (Rein et al.,
2005) and increased coccolithophorid:diatom production between
18.0 and 15.5 ka (Higginson and Altabet, 2004).

Paleoproductivity changes encompassing the Last Glacial Maxi-
mum (LGM) and the Holocene in mid-latitudes off western South
America are associated with the latitudinal migration of the South-
ern Westerlies (SW), and the strength and position of the Southeast
Pacific anticyclone. Climate reconstructions based on marine and
continental archives of the Southern Hemisphere assume a 5–6�
northward shift of the SW during the LGM. This would have pre-
vented coastal upwelling in central-southern Chile, where produc-
tivity did not increase until 13–14 ka in coincidence with the
Meltwater Pulse 1a (35�S and 36�S, Fig. 5). Mohtadi et al. (2008)
linked these higher deglacial and Holocene paleoproductivities,
compared to the LGM, with the onset of active upwelling off cen-
tral-southern Chile and increased export production. In contrast,
at 33�S and farther north, stronger hemispheric meridional winds
caused enhanced upwelling intensity and paleoproductivity during
the last glacial compared to the Holocene (Mohtadi and Hebbeln,
2004; Mohtadi et al., 2008, and references therein).
5. End-to-end shifts

On large scales, regime shifts, or drastic changes vs. gradual
changes in climate, nutrients, and temperature, can contract/ex-
pand the area of high/low productivity (Thomas and Brickley, this
issue) and fish distribution in the HCS (i.e. coastal-oceanic patterns
associated with EN; Chavez, 2006; Chavez et al., 2008; Swartzman
et al., 2008). The ‘‘colder” coastal ecosystem occupies an area of
�200 km from shore with mesoscale filaments, whereas an ‘‘oce-
anic” nutrient-limited, low biomass and primary productivity eco-
system with an efficient recycling system is found offshore. During
warm years, the productive coastal area is reduced dramatically in
its offshore extension and the oceanic ecosystem dominates. Tro-
phic changes, as a consequence of the coastal multi-scale environ-
mental ‘‘warmer” conditions, result in a microbial web with
smaller-sized organisms vs. the classical trophic chain during
‘‘colder” multi-scale environmental conditions. All these ocean
states have large repercussions for the whole ecosystem, including
benthic-pelagic coupling.

The most challenging question is whether coastal upwelling
will intensify/decrease as greenhouse gases increase. Bakun and
Weeks (2008) apply the comparative method to identify the spe-
cific factors underlying the fishery productivity of the marine eco-
system off Peru. The Peru system is the one located at lowest
latitudes and is susceptible to extreme inter-annual ecosystem dis-
turbances associated with EN and other ENSO-related episodes.
These authors argue that this could be regarded as favourable con-
sidering that, in such systems, non-linear processes interact in
intricate ways to move them to configurations that may be much
more difficult to reverse than to establish.

A difficult issue, though intriguing and stimulating, is the sepa-
ration of anthropogenic effects from natural variability. This type
of issue is more common globally every day in different disciplines.
For example, fishing is considered to be the main threat to marine
ecosystems, and Pauly et al. (1998) showed that landings from glo-
bal fisheries have shifted in the last 45 years from large piscivorous
fishes toward smaller invertebrates and planktivorous fishes. This
may imply major changes in the structure of marine food webs,
possibly explaining the decline of landings in recent decades. This
top-down control is a major concern in the HCS.



76 V. Montecino, C.B. Lange / Progress in Oceanography 83 (2009) 65–79
Working in coordination with the fishery fleet was recom-
mended for guiding adaptive management decisions on shorter
time scales in pelagic fisheries, and this has been done with the en-
tire fleet of Peruvian anchoveta purse-seiners using the Peruvian
satellite Vessel Monitoring System (Bertrand et al., 2007, 2008b).
Neira et al. (this issue) used long-term simulations to conclude that
fishing in the southern HCS is more likely to exceed ecological
thresholds and induce regime shifts of low recovery than deca-
dal-scale bottom-up forcing. The authors recommended consider-
ing fishing and environmental variability on the decadal scale
rather than simply focusing on inter-annual variability.
6. Conclusions and further needs

The HCS is a large marine ecosystem whose dynamics permeate
the social and economic sectors of the bordering countries. It is
subject to large fluctuations in climate, ecosystems, productivity,
and fisheries on all time scales. For centuries, coastal communities
have developed around and depended (and still do) heavily on its
marine resources.

The HCS is characterized by the upwelling of cold, nutrient-rich
waters; extremely high biological productivity; and a shallow OMZ
with unique biology and complex biogeochemical processes. The
continued collection of time series and satellite data, in situ obser-
vations and experiments, modelling, biogeography and biodiver-
sity descriptions, and the sedimentary record have only recently
helped understand ocean variability at the regional level.

One important fact is that the abundance and catches of small
pelagic fishes in the HCS are greater than in any other EBC. These
abundances appear to undergo natural multi-decadal and inter-an-
nual fluctuations, even in the absence of fishing harvests. Secondly,
fisheries activities reverberate through entire marine ecosystems,
affecting benthic and pelagic organisms through processes that
are not yet well understood. The economic consequences of mis-
management are severe, providing the motivation for continued
research. Therefore, we propose that further efforts should ad-
dress: (i) the connections between upwelling variation and large-
scale remote forcing; (ii) how upwelling strength and productivity
in the HCS have changed in the recent and geological past; (iii) how
size structure and trophic interactions are organized spatially; (iv)
the role of mesoscale oceanographic features in further supporting
biological production beyond the shelf break area; (v) carbon
retention and export through grazing removal rates and fish inges-
tion rates under different environmental scenarios using multi-
scale approaches; and (vi) regional carbon budgets, along with
their spatial and temporal variability.

Since comparative studies among EBCs have been promoted at
all levels, it is encouraging that there is an ongoing UNDP/GEF-
LME-Humboldt Project focusing on ecosystem-based management
in the HCS-Large Marine Ecosystem through a coordinated frame-
work that provides for improved governance and the sustainable
use of living marine resources and services. Hopefully, initiatives
such as this will result in ecological, social, economical, and tech-
nological improvements and will promote the viability for inte-
grated management, since they are crucial issues for preventing
further deterioration of the coastal zone habitats.
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